

CARBENES AND CARBENOIDS -- CROWN ETHER AND CARBENIC SELECTIVITY EXPERIMENTS WITH PHENYLFLUORO-CARBENE AND CHLOROMETHYLTHIICARBENE

Robert A. Moss^{*1a}, Martin A. Joyce^{1b}, and Frank G. Pilkiewicz
Wright and Rieman Laboratories, School of Chemistry,
Rutgers, The State University of New Jersey,
New Brunswick, New Jersey 08903

(Received in USA 19 May 1975; received in UK for publication 5 June 1975)

Phenylchlorocarbene and phenylbromocarbene could be generated as free carbenes by the action of KO-*t*-Bu on α,α -dihalotoluenes, if the macrocyclic polyether, 18-crown-6, was used to encapsulate the potassium ion, solubilize the base, and bar them from complexation with the carbenes (carbenoid formation).² Importantly, this work implied that "it should be possible to determine whether (other) base-induced α -eliminations afford carbenes or carbenoids by measuring the olefin selectivity in the presence and absence of crown ether...", and that "KOR-18-crown-6 α -eliminations should make free carbenes available when diazoalkane or diazirine precursors are not readily obtainable."² We report here on the successful implementation of these ideas, and on important consequences for the study of carbenic selectivity.³

Phenylfluorocarbene⁴ and chloromethylthiocarbene⁵ were generated from α -bromo- α -fluorotoluene and α,α -dichlorodimethylsulfide, respectively, by the action of potassium *t*-butoxide, with or without an added equivalent of 18-crown-6.⁶ These species were added to tetramethyl-ethylene, trimethylethylene, isobutene, cis-butene, and trans-butene. Except for the adduct of CH₃SCCl and cis-butene,⁷ full characterizations of the cyclopropane products have been published.^{4,5}

Carbenic selectivities were established at 25° using the olefin competition method,⁸ in which the binary cyclopropane product mixtures resulting from pairs of competing olefins were analyzed by gc⁹ (calibrated TC detector). Relative reactivities of the olefins were calculated in the standard manner.⁸ Average deviations from the means of duplicate experiments were <4%, and satisfactory cross-checks⁶ were obtained. Final relative reactivities, normalized to $k_{\text{isobutene}} = 1.00$, appear in Table I, along with analogous data for related carbenic species. Also included are values of $m_{\text{CXY}}^{\text{obsd}}$, the least-squares slope of $\log (k_i/k_{\text{isobutene}})$ for CXY vs.

$\log (k_i/k_{\text{isobutene}})$ for CCl_2 , at 25° . We have shown that $\underline{m}_{\text{CXY}}^{\text{obsd}}$ of (free) CH_3CCl , $\text{C}_6\text{H}_5\text{CBr}$, $\text{C}_6\text{H}_5\text{CCl}$, CCl_2 , CFCl , and CF_2 are correlated by eq. (1). $\underline{m}_{\text{CXY}}$ is a measure of carbenic selectivity, relative to the selectivity of CCl_2 ($\underline{m} = 1.0$).³

$$\underline{m}_{\text{CXY}} = -0.94 \sum_{X,Y} \sigma_{R}^{+} + 0.69 \sum_{X,Y} \sigma_{I} - 0.27 \quad (1)$$

Table I. Relative Reactivities of Alkenes Toward Carbenic Species at 25°

Alkene	$\text{C}_6\text{H}_5\text{CBr}$		$\text{C}_6\text{H}_5\text{CCl}$		$\text{C}_6\text{H}_5\text{CF}$		CH_3SCCl	
	carbenoid ^a	carbene ^b	carbenoid ^c	carbene ^d	carbenoid ^e	carbene ^f	no crown ^g	crown ^h
$\text{Me}_2\text{C}=\text{CMe}_2$	1.6	4.4	2.6	5.1	2.7	5.8 ₅	7.4 ₅	7.6
$\text{Me}_2\text{C}=\text{CHMe}^i$	1.3	2.5	1.6	3.2	1.2	3.0	1.9	2.1
$\text{Me}_2\text{C}=\text{CH}_2$	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
$\underline{c}\text{-MeCH}=\text{CHMe}^{i,j}$	0.29	0.53	0.31	0.37	0.12	0.28	0.29	0.25
$\underline{t}\text{-MeCH}=\text{CHMe}^j$	0.15	0.25	0.11	0.20	0.10	0.20 ₅	0.21	0.19
$\underline{m}_{\text{CXY}}^{\text{obsd}}$	0.59	0.70	0.75	0.83	0.87	0.89	0.88	0.93

^a $(\text{C}_6\text{H}_5\text{CHBr}_2 + \text{KO-t-Bu})$, ref. 10. ^b $(\text{C}_6\text{H}_5\text{CBr}_2 + \text{hv})$, ref. 11. ^c $(\text{C}_6\text{H}_5\text{CHCl}_2 + \text{KO-t-Bu})$, ref. 12. ^d $(\text{C}_6\text{H}_5\text{CCl}_2 + \text{hv})$, ref. 12. ^e $(\text{C}_6\text{H}_5\text{CHBrF} + \text{KO-t-Bu})$, ref. 4. ^f Same as ^e, with 18-crown-6; this work. ^g $(\text{CH}_3\text{SCHCl}_2 + \text{KO-t-Bu})$; this work. ^h Same as ^g, with 18-crown-6; this work. ⁱ Relative reactivities are composites of syn-halo and anti-halo modes of carbene addition. ^j Additions are stereospecific with regard to alkene geometry.

The following observations and interpretations derive from Table I. (1) Relative reactivities for CH_3SCCl additions are essentially identical, whether 18-crown-6 is or is not present during its generation. The "crown ether test"² thus establishes CH_3SCCl to be a free carbene when generated by butoxide-induced α -elimination.^{13a} (2) $\text{C}_6\text{H}_5\text{CF}$ is not free when so generated.^{13b} However, the free carbene can be obtained by the crown ether method, a valuable result because a diazo precursor is unavailable. (3) $\text{C}_6\text{H}_5\text{CX}$ carbenoids exhibit lower selectivities than the corresponding carbenes. We attribute this to the presence of K^+Hal^- in the carbenoid addition transition states, resulting in greater charge dispersal (vis-à-vis the analogous carbene addition transition states). This leads to less positive charge localization on the alkenic carbons, and to a "damped" discrimination between alkenes.⁸ (4) More speculatively, selectivity differences between these carbenoids and carbenes apparently narrow as the carbenic species be-

come more selective; similar selectivities are seen for the C_6H_5CF species,^{14,15} and, with CH_3SCCl , only one species is kinetically detected.^{14,16}

If selectivity (at least partly) reflects "internal stabilization"¹⁷ of a carbene, then observation (4) suggests that carbenes as or more selective than CH_3SCCl ($m_{CXY} > 0.91$)¹⁸ may be sufficiently stabilized by their substituents to be free even when generated in the presence of K^+Hal^- or K^+OR^- . CCl_2 ($m = 1.0$), for example, appears to be free when generated in the presence of KOR ,¹⁹ whereas C_6H_5CX ($m < 0.9$) are not (Table I). This tandem application of crown ether complexation and m_{CXY} analysis to problems of carbonic reactivity simplifies and orders heretofore confusing and unrelated data. It is also powerfully suggestive of new experiments which are in progress.

Acknowledgments. We are grateful to the National Science Foundation, The Public Health Service (National Cancer Institute Grant, CA-14912), and the Busch Memorial Fund of Rutgers University for financial support.

REFERENCES AND NOTES

- (1) (a) Fellow of the Alfred P. Sloan Foundation. (b) Busch Predoctoral Fellow.
- (2) R. A. Moss and F. G. Pilkiewicz, *J. Am. Chem. Soc.*, 96, 5632 (1974).
- (3) R. A. Moss and C. B. Mallon, *ibid.*, 97, 344 (1975).
- (4) R. A. Moss and J. R. Przybyla, *Tetrahedron*, 25, 647 (1969).
- (5) R. A. Moss and F. G. Pilkiewicz, *Synthesis*, 209 (1973).
- (6) C. J. Pedersen, *J. Am. Chem. Soc.*, 89, 7017 (1967); 92, 386, 391 (1970); R. N. Greene, *Tetrahedron Lett.*, 1793 (1972); C. L. Liotta, H. P. Harris, F. Cook, D. J. Cram, and G. Gokel, *J. Org. Chem.*, 39, 2445 (1974).
- (7) Satisfactory characterization by spectral and analytical methods has been completed, and will appear in a full paper.
- (8) For discussions, see R. A. Moss in "Carbenes," Vol. 1, M. Jones, Jr., and R. A. Moss, Eds., Wiley-Interscience, New York, N.Y., 1973, pp. 153 ff.
- (9) For ease of analysis, the chloromethylthiocyclopropanes were quantitatively oxidized (with m -chloroperbenzoic acid) to the corresponding sulfones⁷ prior to gc.
- (10) R. A. Moss and R. Gerstl, *Tetrahedron*, 22, 2637 (1966).
- (11) R. A. Moss, *Tetrahedron Lett.*, 4905 (1967).
- (12) R. A. Moss, J. R. Whittle, and P. Freidenreich, *J. Org. Chem.*, 34, 2220 (1969).

(13)(a) This conclusion refers to the cyclopropanating species. A similar application of the crown ether test to dimethylmethylen carbene has been reported by P. J. Stang and M. G. Mangum, J. Am. Chem. Soc., 97, 1459 (1975); note 20. (b) Based upon our demonstration² of equivalence between photogenerated and KOR-18-crown-6 generated C_6H_5CBr (and C_6H_5CCl).

(14) We take ± 0.03 to be experimental error in m_{CXY}^{obsd} .

(15) $m_{C_6H_5CF}^{calc}$ [from eq. (1)] is 0.96, which differs from $m_{C_6H_5CF}^{obsd}$ by ~ 0.07 . This is reasonable agreement, given that the average deviation of the differences between m_{CXY}^{calc} and m_{CXY}^{obsd} is ± 0.05 ,³ and that $m_{C_6H_5CF}^{obsd}$ was not included in the regression analysis which defined the parameters of eq. (1).³

(16) $m_{CH_3SCCl}^{calc}$ cannot be obtained from eq. (1) because $\alpha_R^+(CH_3S)$ is a reaction-dependent variable: S. Ehrenson, R. T. C. Brownlee, and R. W. Taft, Prog. Phys. Org. Chem., 10, 1 (1973), cf., pp. 40-41. Taking $m_{CH_3SCCl}^{obsd} \sim 0.91$ (Table I), one can calculate from eq. (1) that $\alpha_R^+(CH_3S) \sim -0.39$ in the addition of CH_3SCCl to alkenes. The significance of this "high" value will be discussed in our full paper.

(17) W. von E. Doering and W. A. Henderson, Jr., J. Am. Chem. Soc., 80, 5274 (1958).

(18) This value is offered as a rule of thumb. Given the imprecision in m ,^{14,15} the "critical zone" for the carbenoid-carbene transition might be taken as $\sim 0.85 < m < 0.95$.

(19) Reference 8, pp. 287-288, and citations therein.